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Abstract 

 

In all fields of human activities intensification of use of robots and their systems takes place. In agriculture this 

process takes place too slowly if compared with some domains of machine building industry. Here the problem 

of creation of robots of various structures and for performance of different tasks is solved by using one 

coordinate mechanical blocks with vibrational mechanical drives used for this purpose. This block in a separate 

case is a robot moving in a pipe. Dynamics of such a block is represented as a nonlinear system and because of 

the nonlinearity of a block it is possible to obtain different laws of motions and their parameters. The 

investigation is performed by analytical – graphical method. This enables to choose most suitable parameters of 

the investigated system. 
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1. Introduction 

 

Intensive contemporary development of mechanical structures of robots in general and their 

applications in various domains are represented in detail in the handbook of V. A. Glazunov 

(Glazunov V., 2018) and in a number of research papers of his scientific school. Specific precise 

especially micro manipulators and robots with vibrational drives undergo extensive development 

((Bolotnik N. N. et al., 2016), (Ragulskis K. et al., 1987), (Ragulskis K. et al., 1965), (Bansevičius R. 

et al., 1985) and in a number of other research papers and books) by applying them in various domains 

of industry and science. A great contribution to those developments is made by the achievements of I. 

I. Blekhman and his scientific school, which are represented in an excellent research monograph 

(Blekhman I. I., 2018). 

In the middle of the twentieth century new results were obtained as well as new principles of 

operation of robots were created. In the field of dynamic synchronization methods and means of 

introduction of autonomous structures into non autonomous systems were created. New methods of 

synchronization of the processes and vibrations of mechanical systems with pneumatic, hydraulic and 

other types of vibrators were created ((Ragulskis K. et al., 1967), (Ragulskis K. et al., 1969) and 

elsewhere). By using known investigations (Bolotnik N. N. et al., 2016), (Kurila R., Ragulskienė V., 

1986), (Spedicato S., Notarstefano G., 2017), (Sumbatov A. S., Yunin Ye. K., 2013), (Kibirkštis E. et 

al., 2018) and other research papers, a number of new type vibrators were created. New results were 

obtained by creating pneumo vibrators and their dynamic synchronization (Ragulskis K. et al., 1969), 

(Spruogis B. et al., 2002), (Ragulskis K. et al., 2008) and elsewhere. 

Investigations enabled to substantially increase the precision of precise manipulators and robots 

performing desirable motions and trajectories, to perform positioning of bodies in space with higher 

precision, to increase dynamicity and compatibility of mechanical systems with control systems. 
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In this paper a model with unsymmetric with respect to the direction of motion of the robot viscous 

friction is proposed and investigated. For large values of viscous friction in one direction it can serve 

as a model of self stopping device used in pipe robots. 

 

2. Model of a pipe robot 

 

The investigated system is described by the following equation: 

 
2 sin ,x hx f t   (1) 

where x denotes the displacement of the analysed dynamical system, dot over the variable is used for 

indication of differentiation with respect to the time t, f is the amplitude of excitation, ω is the 

frequency of excitation. Unsymmetric viscous friction is assumed: 
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where 
1

h  and 
2

h  denote the coefficients of viscous friction. 

 

3. Results of investigation of a pipe robot dynamics 

 

The following values of the parameters of the investigated dynamical system were assumed: 
 

21, 1,  0.1.f h     (3) 

Four typical values of 
1

h  were investigated: 
 

1 1 1 10.2, 0.4,  0.8,  1.6.h h h h     (4) 

Calculations from zero initial conditions were performed. Two periods of steady state motions 

were investigated. 

Results for the first value of 
1

h  are represented in Fig. 1. 

 

    

a) Variation of 

displacement as function 

of time 

b) Variation of velocity as 

function of time 

c) Variation of 

acceleration as function 

of time 

d) Variation of velocity 

multiplied by 

acceleration as function 

of time 

   
e) Representation in the 

phase plane: velocity as 

function of displacement 

f) Representation in the 

phase plane: acceleration as 

function of velocity 

g) Representation in the phase plane: velocity 

multiplied by acceleration as function of 

displacement 

Fig. 1. Dynamics of the system for the first set of parameters 
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Results for the second value of 
1

h  are represented in Fig. 2. 

 

    

a) Variation of 

displacement as function 

of time 

b) Variation of velocity 

as function of time 

c) Variation of 

acceleration as function 

of time 

d) Variation of velocity 

multiplied by 

acceleration as function 

of time 

   
e) Representation in the 

phase plane: velocity as 

function of displacement 

f) Representation in the 

phase plane: acceleration 

as function of velocity 

g) Representation in the phase plane: velocity 

multiplied by acceleration as function of 

displacement 

Fig. 2. Dynamics of the system for the second set of parameters 

 

Results for the third value of 
1

h  are represented in Fig. 3. 

 

    

a) Variation of 

displacement as function 

of time 

b) Variation of velocity 

as function of time 

c) Variation of 

acceleration as function 

of time 

d) Variation of velocity 

multiplied by 

acceleration as function 

of time 

   
e) Representation in the 

phase plane: velocity as 

function of displacement 

f) Representation in the 

phase plane: acceleration 

as function of velocity 

g) Representation in the phase plane: velocity 

multiplied by acceleration as function of 

displacement 

Fig. 3. Dynamics of the system for the third set of parameters 
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Results for the fourth value of 
1

h  are represented in Fig. 4. 

 

    

a) Variation of 

displacement as function 

of time 

b) Variation of velocity 

as function of time 

c) Variation of 

acceleration as function 

of time 

d) Variation of velocity 

multiplied by 

acceleration as function 

of time 

   
e) Representation in the 

phase plane: velocity as 

function of displacement 

f) Representation in the 

phase plane: acceleration 

as function of velocity 

g) Representation in the phase plane: velocity 

multiplied by acceleration as function of 

displacement 

Fig. 4. Dynamics of the system for the fourth set of parameters 

 

The influence of the parameters of the investigated system to its dynamic behavior is observed in 

the presented graphical results. 

Variation of displacement as function of time shows the effect of vibrational transportation taking 

place because of the unsymmetric viscous friction. Variation of velocity as function of time indicates 

the vibration behavior of the investigated dynamical system. Variation of acceleration as function of 

time shows more complicated variation than variation of velocity as function of time. Variation of 

velocity multiplied by acceleration as function of time has an even more complicated pattern of 

behavior than variation of previously described quantities as functions of time, but it can be noted that 

all the latter three characteristics in steady state regime of motion have periodic variation. 

Representations in the phase plane play an important role in the investigations of dynamics of 

vibrating systems. Velocity as function of displacement indicates the effect of vibrotransportation of 

the investigated pipe robot. Acceleration as function of velocity has a closed phase trajectory 

indicating vibration behavior of the analysed nonlinear dynamical system. Velocity multiplied by 

acceleration as function of displacement has a phase trajectory which is not closed and thus also 

indicates the effect of vibrotransportation taking place in the pipe robot. 

From the comparison of the corresponding drawings from the previous figures the influence of the 

parameters of the investigated system to the dynamic behavior of the pipe robot is observed. For 

example the values of x in the drawings a) of each of the Figures 1, 2, 3 and 4 indicate that with the 

increase of the coefficient of viscous friction h1 the distance travelled by the pipe robot increases. 

Comparisons of similar type can be made between other corresponding drawings of the previous 

Figures 1, 2, 3 and 4. 

 

4. Investigation of velocity of a pipe robot in steady state regime of motion 

 

Further investigation of velocity of a pipe robot in steady state regime of motion is performed. 

Average velocity and its first three harmonics are presented in Fig. 5. 

From the presented results it is seen that with the increase of nonlinearity the amplitude of the first 

harmonic decreases, while the average velocity and the amplitudes of the second and third harmonics 

increase. Thus for sufficiently strong nonlinearity this model can be used as an approximation of the 

behavior of the self stopping device used in pipe robots. 
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a) Results for the first set of parameters b) Results for the second set of parameters 

  
c) Results for the third set of parameters d) Results for the fourth set of parameters 

Fig. 5. Average velocity and its first three harmonics 

 

Average velocity in steady state regime of motion as function of 
1

h  is presented in Fig. 6. 

 
Fig. 6. Variation of average velocity in steady state regime of motion with increasing nonlinearity 

 

From the presented graphical relationship shown in Figure 6 it is possible to choose the value of 

viscous friction h1 which is used in the process of numerical investigation of dynamic behavior of a 

pipe robot. 

 

5. Conclusions 

 

Robot of one coordinate motion is presented, in which the line of the exciting force of the 

vibration drive coincides with the line of motion of the robot itself. Motion of the robot is obtained 

because of the nonlinearity, which takes place because of the dissipative forces which are 

unsymmetric with respect to the direction of motion of the robot. From definite value of those 

dissipative forces the system becomes as an ideal self stopping device. Presented graphical 

relationships enable to choose the desirable steady state motion. Sequentially connected chain of such 
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robots may be easily synchronized and the choice of their phases can be performed in order to ensure 

reliable operation. 

On the basis of such elementary robots it is possible to create complicated robots easily, which 

perform complicated motions and trajectories in space. 

Investigation of velocity of a pipe robot in steady state regime of motion is performed. Average 

velocity and its first three harmonics are analysed. From the presented results it is seen that with the 

increase of nonlinearity the amplitude of the first harmonic decreases, while the average velocity and 

the amplitudes of the second and third harmonics increase. Thus for sufficiently strong nonlinearity 

this model can be used as an approximation of the behavior of the self stopping device used in pipe 

robots. 
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