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The paper describes a method of thrusts allocation in a propulsion system of an 

underwater robotic vehicle. The vehicle has no other actuators except thrusters so motion 

and positioning is realised only by change of developed thrusts. A proposed control 

allocation method has been tested in cases of a fault-free work of the propulsion system and 

failure of the thruster. A worked out algorithm basis on decomposition of the thruster 

configuration matrix allows obtaining a minimum Euclidean norm solution. Due to 

computational simplicity, obtained by applying of singular value decomposition, the 

proposed approach seems to be an attractive solution for practical applications. 

Underwater robot, propulsion system, power distribution. 

 

Introduction 

 

Nowadays, it is common to use underwater robotic vehicles (URVs) to 

accomplish such missions as inspection of coastal and off-shore structures, cable 

maintenance, as well as hydrographical and biological surveys. In the military field 

they are employed in such tasks as surveillance, intelligence gathering, torpedo 

recovery and mine counter measures.  

Their motion of six degrees of freedom (DOF) can be described by the 

following vectors [1, 3, 4]: 
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where: 
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η– vector of position and orientation in the inertial frame; 

x, y, z– coordinates of position; 

, ,  – coordinates of orientation (Euler angles); 

v – the linear and angular velocity vector with coordinates in the body-fixed 

frame; 

u, v, w – linear velocities along longitudinal, transversal and normal axes; 

p, q, r – angular velocities about longitudinal, transversal and normal axes; 

 – vector of forces and moments acting on the robot in the body-fixed frame; 

X, Y, Z – forces along longitudinal, transversal and normal axes; 

K, M, N – moments about longitudinal, transversal and normal axes. 

Nonlinear dynamic equations of motion can be written in a form [3]:  

 

τ)η(gv)v(Dv)v(CvM       (2) 

 

where: 

M – inertia matrix (including added mass); 

C(v) – matrix of Coriolis and centripetal terms (including added mass); 

D(v) – hydrodynamic damping and lift matrix; 

g() – vector of gravitational forces and moments. 

The modern URVs are more and more frequently equipped with an 

automatic control system in order to execute complex manoeuvres without constant 

human intervention. Basic modules of the control system are depicted in Fig. 1. An 

autopilot computes demanded propelling forces and moments (commands) 
dτ  by 

comparing desired position and orientation of the robot with their current estimates. 

Corresponding with them propeller thrusts f are calculated in a thrust distribution 

module and transmitted as control inputs to a propulsion system.  

 
Fig. 1. Structure of automatic control system (d –vector of environmental 

disturbances) 

1 pav. Struktūra automatinės valdymo sistemos (d- aplinkos trikdžių vektorius) 
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The underwater robot regarded in the paper is presented in Fig. 2. It is the 

open-frame submersible physically connected to the surface by an umbilical cable 

that provides power and communications. The URV is equipped with a mechanical 

manipulator needed for underwater interventions.  

 
 

Fig. 2. A virtual view of the URV 

2 pav. URV virtualus vaizdas 
 

This underwater apparatus has no other actuators except thrusters so both 

movement and positioning is realised only by change of thrusts. Its propulsion 

system consists of six fixed direction thrusters, so the number of actuators is 

greater than the number of robot’s DOF. It means that the propulsion system is 

designed with redundancy and the robot has capability to maintain position and 

attitude after any single actuator failure. Hence, an objective of this work is to 

present a control allocation method both for a fault-free work of the propulsion 

system and in case of the thruster failure. 

 

Thruster model 

 

A relationship between the desired propelling forces and moments 
dτ  and 

corresponding them thrusts f produced by the propulsion system is a complicated 

function depending on a density of water, robot’s velocity v, actuators diameters 

and revolutions, etc. (A detailed analysis of thruster’s dynamics can be found in 

e.g. [6]). In many practical applications it is approximated by so called affine 

model, i.e. a system being linear in its input [3, 7]: 

 

Bfτ d        (3) 

 



51 

 

where B is a known constant matrix. 

For the URV, presented in Fig. 2, basic motion is displacement in a 

horizontal plane with some variation due to diving. Since it operates in a crab-wise 

manner with small roll and pitch angles that can be neglected during normal 

operations, farther in the paper we will focus only on a plane movement, i.e. 

motions in surge, sway and yaw. Movement of three DOFs in the horizontal plane 

is realized by four thrusters assuring speeds up to 1.2 m/s in longitudinal and 0.6 

m/s in transversal axis. The actuators are mounted askew in relation to main 

symmetry axes and symmetrically around a robot’s centre of gravity (see Fig. 3). 

Such configuration allows them to produce at the same time not only single 

propelling forces X and Y or moment N, as shown in Fig. 4, but also any 

combination of them. 

 

 
Fig. 3. A configuration of thrusters responsible for horizontal motion (where:  

di – distance of i
th

 thruster from centre of gravity,
i – angle between longitudinal 

axis and symmetry axis of ith thruster, 
i – angle between longitudinal axis and 

line connecting centre of gravity with centre of symmetry of i
th

 thruster) 

3 pav. Varytuvų konfigūracija reikalinga horizontaliam judėjimui  

Under assumption that surge, sway and yaw motions are commonly 

analyzed, the desired vector τd can be described by the following matrix 

dependence [3, 5]:  

 

TPfτ d        (4) 

 

where:  

 TdNdYdXd  ,,τ 

dXforce in the longitudinal axis,  

dY – force in the transversal axis,  
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dNmoment about the normal axis, 

 Tffff 4321 ,,,f  ,   

fi–  thrust of the i
th 

 thruster, 

T –  thruster configuration matrix: 
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Fig. 4. Allocation for surge, sway and yaw motions 

4 pav. Paskirstymas bangavimo svyravimo ir vingiavimo judesiams  
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 Procedure of power distribution 

 

Under assumption that the vector dτ  is bounded, in such a way that the 

calculated elements of the vector f can never exceed the boundary values fmin and 

fmax, the control allocation problem, i.e. computation f from τd, is usually formulated 

as the least-squares optimisation problem: 

 

Hffmin
f

TJ          (5) 

 

subject to: 

 

0Tfτ d        (6) 

 

where H is a positive definite matrix. 

The solution of the above problem with using the Lagrange multipliers is 

shown in [3] as: 

dτTf *        (7) 

where: 

 

  111* TTHTHT
 TT      (8) 

 

is the generalized inverse. For the case IH   the expression (8) reduces to 

the Moore-Penrose pseudoinverse [4]: 

 

  1* TTTT


 TT       (9) 

 

The above expression is an effective method of finding the optimal 

allocation for the multi-thruster propulsion system in the fault-free work, but is 

unsatisfied in case of the actuator failure. In such a case another procedure must be 

applied assuring that demanded generalised forces and moment can be developed 

by the remaining actuators. A solution usable in both described cases is proposed 

below. 

 

Using of singular value decomposition to control allocation 

 

The singular value decomposition (SVD) is an eigenvalue-like 

decomposition for rectangular matrices [2, 5]. The SVD has the following form for 

the thrusters configuration matrix T: 

 
TUSVT         (10) 
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where: 

U, V – orthogonal matrices of dimensions 33 and 44, respectively, 
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ST – diagonal matrix of dimensions 33, 

0– null matrix of dimensions 31.  

 

Diagonal entries 
i  are called singular values of the matrix T. They are 

positive and ordered 
321   .  

Decomposition (10) allows working out a computationally convenient 

procedure to calculate the thrust vector f being a minimum-norm solution to (7). 

The procedure will be regarded for two cases: 

1. all thrusters are operational ( IP  ), 

2. one of the thrusters is non-operational ( IP  ). 

 

Algorithm for all thrusters active 

 

Let us denote:  TdNdYdXd  ,,τ   – required input vector, 

 Tffff 4321 ,,,f   – thrust vector necessary to generate the vector
dτ . 

Direct substitution of (10) shows that the vector f determined by formulas 

(7) and (9) can be written in the form:  
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     (11) 

 

Algorithm for one thruster non-operational 

 

Let us consider that the k
th
 thruster is off. It means that 0kf  and 0kkp . 

Substitution (10) into the equation (4) leads to the following dependence: 

 

PfUSVTPfτ T
d        (12) 

 

Defining: 

 Tkk ffff 4111 ,...,,...,'f  , 
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 *
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, 

the expression (12) can be written in a form: 

 

'fUSVτ *
fd        (13) 

The matrices U and *
fSV  have dimensions 33 so the vector 'f  can be 

computed by means of a simple formula: 

 

  d
T τUSV'f

1*
f


       (14) 

 

Hence, the values of the thrust vector f can be obtained as follows: 

 

 Tkk ffff ',...',0,',...,'f 311       (15) 

 

Simulation study 

 

Computer experiments have been made to confirm validity of the proposed 

control allocation method under the following assumptions: 

1. The nonlinear mathematical model (2) is used to simulate the vehicle’s 

behaviour (see the Appendix), 

2. The URV has to follow the desired path beginning from (0 m,0 m), passing 

target way-points: (0 m, 20 m), (40 m, 35 m), (80 m, 25 m), (80 m, -30 m), 

(40 m, -40 m), (0m, -20 m and coming back to the start,  

3. Its movement is under interaction of environmental disturbances (a sea 

current with average speed 0.25 m/s and direction 135
0
), 

4. Hydrodynamic thrusts are computed using formulas (11) or (15) in 

depends on state of thrusters, 

5. Travel time is not fixed, thus the navigation between two way-points is not 

constrained by time. 

Some results of simulations, showing desired and real paths, generalized 

forces and moment and developed thrusts, are depicted in Fig. 5 and Fig. 6. The 

first of them is for the failure-free work of the propulsion system and the second 

for failure of the 3
rd

 thruster. It can be seen that in all cases a path error is almost on 

the same low level. It indicates that the failure of the actuator has a small influence 

on accuracy of the robot’s motion. The inserted examples demonstrate ability of 

the proposed control allocation method to cope with a no serviceability of the 

single actuator in the propulsion system. 

 

Conclusions 

 

The paper presents the method of control allocation for the underwater 

robot. It can be used for both the fault-free work of the propulsion system and the 

failure of the thruster.  
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Fig. 5. Simulation results of path-keeping for fault-free case: desired and real path 

(upper),generalized forces and moment (middle) and developed thrusts (down 

plot)  

5 pav. Palaikymo kelio modeliavimo rezultatai be sutrikimų atvejui: 

pageidaujamas ir tikras kelias (viršutinis), apibendrintos jėgos ir momentas 

(viduryje) ir išvystytos varomos jėgos (žemiausiame plane) 
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Fig. 6. Simulation results of path-keeping for failure of actuator No. 3: desired and 

real path (upper), generalized forces and moment (middle) and developed thrusts 

(down plot) 

6 pav. Palaikymo kelio modeliavimo rezultatai pavaros Nr. 3 gedimui: 

pageidaujamas ir tikras kelias (viršutinis), apibendrintos jėgos ir momentas 

(viduryje) ir išvystytos varomos jėgos (žemiausiame plane) 
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The worked out algorithm basis on decomposition of the thruster 

configuration matrix and allows obtaining minimum Euclidean norm solutions. 

Due to computational simplicity obtained by applying singular value 

decomposition the proposed approach can be an attractive alternative to other 

solutions, e.g. the method using the Lagrange multipliers. 

The described control allocation algorithm is of a general character and can 

be successfully applied to different types of the URVs. 
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Appendix  

 

The following model of the URV dynamics was used in the simulation 

study: 

 1.29,9.322.8,5.126,5.108,0.99M diag  
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937.12,002.14,212.3

03.478,41.405,18.227

603.1,918.1223.0,0.0,0.0,0.10vD
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The thruster configuration matrix T corresponding to the Fig. 3 was as 

follows: 
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Jerzy Garus 

 

POVANDENINIO MOBILAUS ROBOTO VARANČIŲJŲ JĖGŲ 

PASKIRSTYMO METODAS  

 

Reziume 

 

Straipsnyje analizuojamas mobilių povandeninių robotų varančiųjų jėgų 

paskirstymo metodas. Robotai neturi kitos pavaros, išskyrus stūmimo sistemos 

varomąją jėgą, todėl judesio ir padėties keitimas vykdomas stūmimo sistemos 

išvystoma jėga. Pasiūlytas padėties kontrolės metodas buvo išbandytas patikimuose 

varomosios sistemos darbuose ir jos gedimų atvejais. Algoritmo pagrindu sukurta 

varomosios sistemos jėgos paskirstymo matrica leidžia gauti minimalų Euklido 

normos sprendimą. Dėka skaičiavimo paprastumo, taikant išskaidymą po vieną 

reikšmę, siūlomas sprendimas atrodo patrauklus praktiniam pritaikymui. 

Povandeninis robotas, varomoji sistema, galios paskirstymo. 
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Ержи Гарус 

 

МЕТОД РАСПРЕДЕЛЕНИЯ ВЕДУЩИХ СИЛ МОБИЛЬНОГО 

ПОДВОДНОГО РОБОТA 

 

Резюме 

 

В статье представлен метод распределения ведущих сил в 

толкательной системе мобильного подводного робота. Робот не оснащен 

другими приводами, за исключением толкательной системы, поэтому 

движение и позиционирование осуществляется только путем изменения 

направления ведущей силы. Предложенный метод управления 

распределением сил был протестирован на безотказность работы 

толкательной установки и выхода из строя двигателя. Разработан алгоритм, 

на основе разложения матрицы конфигурации двигателя позволяет получить 

минимальную евклидову норму решения. Благодаря простоте вычислений, 

предлагаемый подход представляется привлекательным решением для 

практического применения. 

Подводный робот, толкательная система, распределение сил. 

 




