Agricultural Engineering, Volume 46

OPPORTUNITIES FOR REDUCTION OF ENERGY CONSUMPTION IN THE LIFE CYCLE OF BIODIESEL OBTAINED FROM MICROALGAE SCENEDESMUS SP.

Virginija Skorupskaite, Violeta Makareviciene
Aleksandras Stulginskis University

Abstract

The article considers the opportunities for reduction of energy consumption in the life cycle of biodiesel obtained from microalgae oil. Results show that by introducing technical glycerol and substrate leftover after production of biogas into the microalgae growth media energy consumption can be significantly reduced. Production of biogas from de-oiled microalgae improves the energy balance of the life cycle of biodiesel obtained from microalgae oil. It is impossible to obtain fuel containing more energy than would be used in the process of production if microalgae for biodiesel production are cultivated in conventional growth media. Only by subjecting microalgal biomass for production of gaseous and liquid biofuel (biodiesel and biogas) the total energy consumption is lower and equals to 65802.03 MJt-1 than energy value of biofuel, i.e. 79083.32 MJt-1. In this case the fossil energy ratio (FER) for biodiesel reaches 1.2.

Keyword(s): Microalgae, energy consumption, biodiesel, fossil energy ratio.


References

Brennan, L.; Owende, P. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustanable Energy Reviews, 14 (2) 557-577. DOI: 10.1016/j.rser.2009.10.009.

Chen, C. Y.; Yeh, K. L.; Aisyah, R.; Lee, D. J.; Chang, J. S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102 (1), 71-81. DOI: 10.1016/j.biortech.2010.06.159

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology advances, 25, 294-306. DOI: 10.1016/j.biotechadv.2007.02.001.

Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R. A.; Steyer, J. P. 2011. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource technology 102, 207–214. DOI: 10.1016/j.biortech.2010.06.154.

Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. 2008. Microalgal triacylglicerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54 (4), 621-639. DOI: 10.1111/j.1365-313X.2008.03492.x.

Khoo, H. H.; Sharrat, P. N.; Das, P.; Balasubramanian, R. K.; Naraharisetti, P. K.; Shaik, S. 2011. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresource Technology, 102 (10), 5800-5807. DOI: 10.1016/j.biortech.2011.02.055

Lardon, L.; Helias, A.; Sialve, B.; Steyer, J. P.; Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43 (17), 6475-6481.

Makareviciene, V.; Skorupskaite, V.; Andruleviciute, V. 2012. Biomass and oil production of green microalgae Scenedesmus sp. using different nutrients and growth conditions. Environmental Research, Engineering and Management, 4(62), 5-13.

Makareviciene, V.; Skorupskaite, V.; Andruleviciute, V.; Kasperoviciene, J. 2011. Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potential biofuel feedstock. Environmental Research, Engineering and Management, 3(57), 21-27.

Pokoo-Aikins, G.; Nadium, A.; El-Halwagi, M. M.; Mahalec, V. 2010. Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technologies and Environmental Policy, 12, 239-254. 11. Razon, L. F.; Tan, R. R. 2011. Net energy analysisof the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Applied Energy, 88 (10), 3507-3514. DOI: 10.1016/j.apenergy. 2010.12.052.

Schenk P. M.; Thomas-Hall, S. R.; Stephens, E.; Marx, U. C.; Mussgnug, J. H.; Posten, C.; Kruse, O.; Hankamer, B. 2008. Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Resources, 1, 20-43. DOI 10.1007/s12155-008-9008-8.

Sendzikiene, E. 2005.Usage of fatty wastes of agricultural origin for the production of biodiesel. Dissertation thesis (04T), Lithuanian University of Agriculture.

Shirvani, T.; Yan, X. Y.; Inderwildi, O. R.; Edwards, P. P.; King, D. A. 2011. Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy and Environmental Science 4, 3773–3778. DOI: 10.1039/C1EE01791H.

Stephenson, A. L.; Kazamia, E.; Dennis, J. S.; Howe, Ch. J.; Scott, S. A.; Smith, A. G. 2010. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy & Fuels, 24 (7) 4062-4077.

Van Gemert, G. W. 2009. The Delta dryer. Theoretical and technological development of an energy-efficient dryer for sludge. Dissertation. TU Delft.

Xu, L.; Guo, Ch.; Wanga, F.; Zheng, S.; Liu, Ch. Z. 2011. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technology, 102 (21), 10047-10051. DOI: 10.1016/j.biortech.2011.08.021.


Full Text: PDF



DOI: http://dx.doi.org/10.15544/ageng.2014.009

Refbacks

  • There are currently no refbacks.
2374 views

Agricultural Engineering ISSN 1392-1134 / eISSN 2345-0371

This journal is published under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License. Responsible editor: Dr A. Žunda.